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Broader Scientific and Societal context
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SpaceX will lose up to 40 satellites it just launched due to a solar

storm
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Solar geomagnetic storms could threaten

more satellites after Elon Musk's Starlink

By Chelsea Gohd published 28 days ago

"That is a drag," NOAA's Bill Murtagh said.
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Scientific Question

 Can we estimate the uncertainty associated to model predictions?

— Can we leverage machine learning tools to do so?

 Can we use machine learning for science discovery?

Eos
,  Science News by AGU

ABOUT  SPECIALREPORTS  TOPICS v  PROJECTS v NEWSLETTER SUBMIT TO EOS Q

Ten Ways to Apply Machine Learning in Earth
and Space Sciences

Machine learning is gaining popularity across scientific and technical fields, but it’s often not clear to researchers, especially young
scientists, how they can apply these methods in their work.

By J. Bortnik and E. Camporeale 29 June 2021 & N o) o @




Next Generation Software for Data-
driven Models of Space Weather with
Quantified Uncertainties (SWQU)

* Joint NSF/NASA pilot program, started in 2020
 The program is expected to directly contribute to the long-term goal of creating

space weather models with quantifiable predictive capability.

* 6 projects awarded so far



Next Generation Software for Data-
driven Models of Space Weather with
Quantified Uncertainties (SWQU)

Forecasting Small-Scale Plasma Structures in the Earth's lonosphere-Thermosphere
System (PI: E. Sutton; CU Boulder [+ Cornell U.])

Composable Next Generation Software Framework for Space Weather Data Assimilation
and Uncertainty Quantification (PI: R. Linares, MIT [+ UCSD, U. Michigan])

Improving Space Weather Predictions with Data-Driven Models of the Solar Atmosphere
and Inner Heliosphere (PI: N. Pogorelov, U. Alabama at Huntsville [+ GSFC, MSFC,
LBNL, PSI, SSRC])

A Flexible Community-based Upper Atmosphere Ensemble Prediction System (PI: A.
Ridley, U. Michigan [+ UCAR, GSFC, NRL])

NextGen Space Weather Modeling Framework Using Data, Physics and Uncertainty
Quantification (PI: G. Toth, U. Michigan)



Next Generation Software for Data-
driven Models of Space Weather with
Quantified Uncertainties (SWQU)

 Ensemble Learning for Accurate and Reliable Uncertainty Quantification (PI: E. Camporeale, CU

Boulder [+ UCLA])



Next Generation Software for Data-
driven Models of Space Weather with
Quantified Uncertainties (SWQU)

Ensemble Learning for Accurate and Reliable Uncertainty Quantification (Pl: E. Camporeale, CU
Boulder [+ UCLA])
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Next Generation Software for Data-
driven Models of Space Weather with
Quantified Uncertainties (SWQU)

Ensemble Learning for Accurate and Reliable Uncertainty Quantification (Pl: E. Camporeale, CU
Boulder [+ UCLA])

Deterministic forecasts Probabilistic forecasts
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Next Generation Software for Data-
driven Models of Space Weather with
Quantified Uncertainties (SWQU)

Ensemble Learning for Accurate and Reliable Uncertainty Quantification (Pl: E. Camporeale, CU
Boulder [+ UCLA])

Deterministic forecasts Probabilistic forecasts Ensemble forecasts
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ACCRUE: Accurate and Reliable
Uncertainty Estimate

Take home message
ACCRUE is a method that:

Estimates the uncertainties associated with single-point outputs
generated by a deterministic model, in terms of Gaussian distributions;

Ensures the optimal trade-off between accuracy and reliability;

Does not need to run ensembles. It costs as much as training and
executing a neural network

It is model agnostic
Code available: zenodo.1485608




What’s under the hood?

Let us assume that for a single

. - . . —— Model output
(multidimensional) input X, our model

predicts an output y = f(x).

Blue line — Model output
Red line - Real (observed value)

Working hypothesis:
We want to use the model output as the

mean of a Gaussian distribution that is
interpreted as a probabilistic forecast.

What is the optimal width of a
Gaussian forecast?



What’s under the hood?

What is the optimal width of a

Gaussian forecast?
It's the one that gives you the
best accuracy (sharpness)

AND
best reliability (calibration)




Accuracy (Sharpness)

Different metrics for measuring accuracy of a
probabilistic forecast:

- Negative Log Likelihood (Ignorance Score)

* Measures the value of the probability density
function (pdf) at the observation

— Continuous Rank Probability Score (CRPS)

* Measures the ‘distance’ between the cumulative
distribution function (CDF) of the prediction and the
CDF of observation
Bottom line: The optimal width of the Gaussian
distribution that represents your uncertainty is
the one that ‘fits the data the best’
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Blue line - Prediction
Red line — Observation



Reliability (a.k.a. Calibration)
What is a probabilistic forecast anyway?

Risk Analysis, Vol. 25, No. 3, 2005 DOI: 10.1111/).1539-6924.2005.00608.x

“A 300/0 Chaﬂce Of Rain Tomorrow”: HOW DOES the Public TAEBLE 2. Rcsponscs to Ql4a’ the mcanjng of the forecast
Understand Probabilistic Weather Forecasts? “There is a 60% chance of rain for tomorrow” (N = 1330).

Percent of

Gerd Gigerenzer,'* Ralph Hertwig,? Eva van den Broek,' Barbara Fasolo,! respondents
and Konstantinos V. Katsikopoulos!

It will rain tomorrow in 60% of the region. 16
It will rain tomorrow for 60% of the time. 10
It will rain on 60% of the days like tomorrow.*
60% of weather forecasters believe that it will

rain tomorrow.
I don’t know.
Other (please explain).

WEATHER AND FORECASTING

* Technically correct interpretation, according to how PoP fore-
casts are verified, as interpreted by Gigerenzer et al. (2005).

Communicating Uncertainty in Weather Forecasts: A Survey of the U.S. Public

REBEcCcA E. MoRss, JULIE L. DEMUTH, AND JEFFREY K. LAZO

National Center for Atmospheric Research,* Boulder, Colorado




Reliability (a.k.a. Calibration)
What is a probabilistic forecast anyway?

If a model is ‘perfectly calibrated’,
“X% chance of rain” means:



Reliability (a.k.a. Calibration)
What is a probabilistic forecast anyway?

If a model is ‘perfectly calibrated’,
“X% chance of rain” means:
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Two objective optimization problem

* |t turns out that reliability and accuracy are competing objectives, that is
they cannot be optimized simultaneously!!

* We define the Accuracy-Reliability (AR) cost function:
AR = CRPS + 3 *RS

| f

Accuracy Reliability

exp(—n;)

1".-"'. il

CRPS(¢,0) = m‘[:erf( — ) l \:e\p( ——] RS = E{%{:erfi:n;] F 1) %[3? 1)
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* We solve this optimization problem with a deep neural network



ACCRUE: Accurate and Reliable
Uncertainty Estimate

Method RECAL KM ACCRUE

Score CRPS
Dataset Size
Boston Housing 506 E 0.25 £0.05 0.25 £ 0.04 025 £0.03 023+ 0.4
Concrete 1030 0.22 £0.03 0.23+0.13 0.26 +0.02 0.21+0.03
Energy 768 8 0.059 £0.03 0.056 = 0.03 0.087 £0.01 0.052 + 0.01
Kin8nm 8192 0.17 £ 0.005 0.16 £ 0.01 0.24 £ 0.005 0.16 £+ 0.005
Power plant 9568 0.13 £ 0.003 0.13 £0.05 0.15 £ 0.002 012+ 0.01
Protein 45,730 0.38 £0.02 047 £0.13 0.40 £ 0.007 0.37 £ 0.02

ACCRUE: ACCURATE AND RELIABLE UNCERTAINTY M Tl o wew o
ESTIMATE IN DETERMINISTIC MODELS e e

Boston Housing 506 %279 0655  175%37  167£59
Concrete 1030 M6L58 14438 221230  115£39
. 1% N Encrzy 768 8 03189  202+180  283-28  130£65

L
Enrico Cﬂmpﬂreale & Algﬂ Care Kingnm 8192 50£128 83130  255+05 SSE128
Power plant 9368 125+ 1.4 34409 16.1 £0.8 26408

?Urziversity of Colorado, Boulder, Colorado, USA Protein 45730 BTE08 5009 106£09 54088
Wine 1599 160+3.7 79+2.0 80+24 83+24

ZU?’IIITC’?‘SIfy Qf B?‘(’SCM, Bresc?’a’ Il‘a l]y Yacht 308 26094 2434135 36.6 £3.0 195£85

International Journal for Uncertainty Quantification, 11(4):81-94 (2021)

Space Weather

RESEARCH ARTICLE On the Generation of Probabilistic Forecasts From

2011-02-03 12:00 2011-02-04 18:00 2011-02-05 00:00

10.1029/2018SW002026 Deterministic Models

) ’ ) Key Points: . .
1102061200 s + We introduce a new method to E. Camporeale? ", X. Chu*'", 0. V. Agapitov® ', and J. Bortnik5

estimate the uncertainties associated
with single-point outputs generated LCenter for Mathematics and Computer Science (CWT), Amsterdam, The Netherlands, 2Cooperati\le Institute for
by a deterministic model Research in Environmental Sciences, University of Colorado, Boulder, CO, USA, *Laboratory for Atmospheric and
+ The method ensures a trade-off Space Physics, University of Colorado, Boulder, CO, USA, *Space Sciences Laboratory, University of California Berkeley,

betw d reliability of . . . . . . . . .
CIWEEI Accuracy and reia ot ity o Berkeley, CA, USA, *Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
the generated probabilistic forecasts

+ Computationally cheap model:




Scientific Question

 Can we use machine learning for science discovery?
- Inverse problems



Radial diffusion in Earth’s radiation
belt (Quasi-linear theory)




Inverse problem statement

or oL\ L2 oL

T

What is the optimal choice of parameters (D, and 1) that makes the result of
the diffusion equation most consistent with data?

This is an INVERSE PROBLEM (we know the result, and want to infer the
iInputs), which is much harder than the “forward” model.

It is completely ill-posed!! (You can find a valid T for any given choice of D)

Instead of pure-diffusion (QL assumption) we use a more general FP
equation:

ot oL\ L2 0oL oL

Of (L) _ 20 (DLL df (LJ)) ~ 9Cf(L1)




The Physics-Informed Neural Network
(PINN) approach to parameter
estimation

HTML] Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential
equations

M Raissi, P Perdikaris, GE Karniadakis - Journal of Computational physicEIsevier

... We introduce physics-informed neural networks — neural networks that are trained to solve
supervised learning tasks while respecting any given laws of physics described by general ...

Y¢ Save P9 Cite w Related articles All 6 versions




PINN (Physics-Informed Neural Network) in a nuthsell

 PINN idea: to include the Partial Differential Equation (PDE) we want
to solve in the cost function!

o 0 (Drp 0f f1° \ 2

-

* A Neural Net outputs an analytical and differentiable solution.

* The trick under the hood: autodiff (automatic differentiation). All
derivatives are computed exactly (using chain rule) !

e This is both:

- a grid-less method to solve a PDE on a set of points (forward)
- a way of estimating the coefficients of a PDE (inverse problem)




Van Allen Probes data

Complete Dataset: 520,000 data points

ation

L =700 MeV/G K =0.1RgG"




Diffusion coefficient DLL
5.5

5

“Best” 5
solutions in

an ensemble
Drift cnaffic.ient C _ ] Of 2 O

2
Jan 2015 Jan 2016 Jan 2015 Jan 2016 Jan 2014 Jan 2015 Jan 2016 Jan 2015 Jan 2016

2
Jan 2014 Jan 2015 Jan 2016

Drift coefficient C

This is something you do not
get with any other method:

A spatio-temporal
characterization of your drift
and diffusion coefficients

Average of
the best 5
solutions




Statistical analysis of coefficients
(and closing the circle: a simple parameterization)

[25-75] percentile [25-75] percentile
— median | ———median

D~ |18 4 1 _{ | —cubic interpolation
20
| D ~L
—cubic interp.

logyo D, = —0.0593L° 4 0.7368L* — 1.33L — 4.505 This parameterization outperforms
(on a test set) everything that has

log,, C' = 0.0777L° — 1.2022L* + 6.3177L — 12.6115 been done in the literature in the
past 20 years!




Discovering new physics:
Relative importance between drift and diffusion
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Preprint Open Access You are viewing the latest version by default [v1]

Data-driven discovery of Fokker-Planck equation for the Earth's
radiation belts electrons using Physics-Informed Neural Networks
Authors

Enrico Camporeale & B, George J Wilkie, Alexander Yurievich Drozdov (2, Jacob Bortnik

Published Online: Fri, 25 Feb 2022| https://doi.org/10.1002/essoar.10510599.




ML-Helio 2022

Machine Learning

in Heliophysics
21 - 25 March 2022
Bou]de; CO

" Topics |
- Space weather foreca@%
- Inverse problems f
_ "= Automatic event identification
- Feature detection and tracking
- Surrogate models
- Uncertainty Quantification

Methods
- Machine and Deep Learning
- System identification and informationstheory
- Combination of Ehyswsfb sed anq data-driven modellng
- Bayesian analysis #"

http_s://ml-helig.,github.io/
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https:/Iml-helio.github.io/

Contact:

Currently: 180 participants (120 virtual + 60 in person)
NSF funding still available for early-careers!

Sponsors

NEXTGEN

FEDERAL SYSTEMS



mailto:Enrico.camporeale@noaa.gov

The PRAISE initiative:
Promoting Research in Al for the Space Economy

Space Economy:

- Space Weather
- Space Traffic Management
* Realization that Al will become integrated in the decision making process

Al challenges:

- Adversarial attacks
- Out-of-distribution generalization
- Uncertainty-aware ML

 Bottom-up and inclusive approach to form a strong team and organize ideas around this topic

* Considering proposing a NSF Al Institute for the Space Economy

Reach out if interested: enrico.camporeale@noaa.gov

University of Colorado UCL A M

MICHIGAN




Back-up slides



Results on test set when using PINN-learned
coefficients (cubic interpolation)

Symmetric percentage accuracy Symmetric signed percentage bias
# BA ' ) —BA
# QOzeke Rebis —Ozeke
» PINN-derived cubic fit | | —PINN-derived cubic fit




f— Van AlleniFrobes
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