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Andy Riley “The book of bunny suicides”



Scientific Question

● Can we estimate the uncertainty associated to model predictions?

– Can we leverage machine learning tools to do so?

● Can we use machine learning for science discovery?



Next Generation Software for Data-
driven Models of Space Weather with 

Quantified Uncertainties (SWQU)
● Joint NSF/NASA pilot program, started in 2020

● The program is expected to directly contribute to the long-term goal of creating 
space weather models with quantifiable predictive capability. 

● 6 projects awarded so far



Next Generation Software for Data-
driven Models of Space Weather with 

Quantified Uncertainties (SWQU)
● Forecasting Small-Scale Plasma Structures in the Earth's Ionosphere-Thermosphere 

System (PI: E. Sutton; CU Boulder [+ Cornell U.])

● Composable Next Generation Software Framework for Space Weather Data Assimilation 
and Uncertainty Quantification (PI: R. Linares, MIT [+ UCSD, U. Michigan])

● Improving Space Weather Predictions with Data-Driven Models of the Solar Atmosphere 
and Inner Heliosphere (PI: N. Pogorelov, U. Alabama at Huntsville [+ GSFC, MSFC, 
LBNL, PSI, SSRC])

● A Flexible Community-based Upper Atmosphere Ensemble Prediction System (PI: A. 
Ridley, U. Michigan [+ UCAR, GSFC, NRL])

● NextGen Space Weather Modeling Framework Using Data, Physics and Uncertainty 
Quantification (PI: G. Toth, U. Michigan)
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● Ensemble Learning for Accurate and Reliable Uncertainty Quantification (PI: E. Camporeale, CU 
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Next Generation Software for Data-
driven Models of Space Weather with 

Quantified Uncertainties (SWQU)

● Ensemble Learning for Accurate and Reliable Uncertainty Quantification (PI: E. Camporeale, CU 
Boulder [+ UCLA])

NON ACTIONABLE → ACTIONABLE



ACCRUE: Accurate and Reliable 
Uncertainty Estimate

Take home message 

ACCRUE is a method that:
– Estimates the uncertainties associated with single-point outputs 

generated by a deterministic model, in terms of Gaussian distributions;
– Ensures the optimal trade-off between accuracy and reliability;
– Does not need to run ensembles. It costs as much as training and 

executing a neural network
– It is model agnostic
– Code available: zenodo.1485608 



What’s under the hood?

Let us assume that for a single 
(multidimensional) input x, our model 
predicts an output y = f(x).

Blue line → Model output
Red line → Real (observed value)

Working hypothesis:
We want to use the model output as the 
mean of a Gaussian distribution that is 
interpreted as a probabilistic forecast.

What is the optimal width of a 
Gaussian forecast?

σ ?



What’s under the hood?

What is the optimal width of a 
Gaussian forecast?

It’s the one that gives you the
 

best accuracy (sharpness) 
AND

best reliability (calibration)
σ ?



Accuracy (Sharpness)

● Different metrics for measuring accuracy of a 
probabilistic forecast:

– Negative Log Likelihood (Ignorance Score)
● Measures the value of the probability density 

function (pdf) at the observation

– Continuous Rank Probability Score (CRPS)
● Measures the ‘distance’ between the cumulative 

distribution function (CDF) of the prediction and the 
CDF of observation

● Bottom line: The optimal width of the Gaussian 
distribution that represents your uncertainty is 
the one that ‘fits the data the best’

Blue line → Prediction
Red line → Observation



Reliability (a.k.a. Calibration)
What is a probabilistic forecast anyway?
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Reliability (a.k.a. Calibration)
What is a probabilistic forecast anyway?

If a model is ‘perfectly calibrated’, 
“X% chance of rain” means:

It rained X% of the times the 
model predicted 

“X% chance of rain”

(for any value of X)

Overconfident

Underconfident



Two objective optimization problem
● It turns out that reliability and accuracy are competing objectives, that is 

they cannot be optimized simultaneously!!
● We define the Accuracy-Reliability (AR) cost function:

AR = CRPS + β * RS

● We solve this optimization problem with a deep neural network

Accuracy        Reliability



ACCRUE: Accurate and Reliable 
Uncertainty Estimate



Scientific Question

● Can we use machine learning for science discovery?

– Inverse problems



Radial diffusion in Earth’s radiation 
belt (Quasi-linear theory)

Log (Phase Space Density)



Inverse problem statement

● What is the optimal choice of parameters (D
LL

 and τ) that makes the result of 
the diffusion equation most consistent with data?

● This is an INVERSE PROBLEM (we know the result, and want to infer the 
inputs), which is much harder than the “forward” model.

● It is completely ill-posed!! (You can find a valid τ for any given choice of D
LL

)

● Instead of pure-diffusion (QL assumption) we use a more general FP 
equation: 



The Physics-Informed Neural Network 
(PINN) approach to parameter 

estimation



PINN (Physics-Informed Neural Network) in a nuthsell
● PINN idea: to include the Partial Differential Equation (PDE) we want 

to solve in the cost function!

● A Neural Net outputs an analytical and differentiable solution.
● The trick under the hood: autodiff (automatic differentiation).  All 

derivatives are computed exactly (using chain rule) !
● This is both:

– a grid-less method to solve a PDE on a set of points (forward)
– a way of estimating the coefficients of a PDE (inverse problem) 



  

Van Allen Probes data

Training & Validation Test



  

“Best” 5 
solutions in 
an ensemble 

of 20

Average of 
the best 5 
solutions 

This is something you do not 
get with any other method: 
A spatio-temporal 
characterization of your drift 
and diffusion coefficients



  

Statistical analysis of coefficients
(and closing the circle: a simple parameterization)

This parameterization outperforms 
(on a test set) everything that has 
been done in the literature in the 

past 20 years!



  

Discovering new physics:
Relative importance between drift and diffusion

r = Drift term over diffusion term

Drift and diffusion 
are comparable for L<4



ML-Helio 2022

 https://ml-helio.github.io/

Contact:  Enrico.camporeale@noaa.gov

Currently: 180 participants (120 virtual + 60 in person)
NSF funding still available for early-careers!

Sponsors

mailto:Enrico.camporeale@noaa.gov


The PRAISE initiative:
Promoting Research in AI for the Space Economy

● Space Economy:

– Space Weather

– Space Traffic Management

● Realization that AI will become integrated in the decision making process

● AI challenges:

– Adversarial attacks

– Out-of-distribution generalization

– Uncertainty-aware ML

● Bottom-up and inclusive approach to form a strong team and organize ideas around this topic

● Considering proposing a NSF AI Institute for the Space Economy

Reach out if interested:  enrico.camporeale@noaa.gov



Back-up slides



  

Results on test set when using PINN-learned 
coefficients (cubic interpolation)
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